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Abstract

The category theory is a mathematical domain, which aims to unify vari-
ous structural concepts from different fields and provide general concepts. One
of its fundamental theorems is the Yoneda Lemma, named after the math-
ematician Nobuo Yoneda. While the proof of the lemma is not difficult to
understand, its consequences in a diversitiy of areas can not be overstated. It
provides insight and important applications in other areas, in fact an algebraic
version is known as Cayley’s theorem.
The aim of this project is to enable a reader without or with very little knowl-
edge about category theory to understand the Yoneda lemma and its proof.
For this purpose we will provide the basic knowledge of category theory, which
will be more explicitly explained by giving several examples that have been
covered in other subjects such as algebra and topology. Finally, we are going
to illustrate one of its applications on simplicial sets.

1 Introduction
"Chaque objet abstrait est devenu concret par l’usage [...] un objet concret est un

objet abstrait auquel on a fini par s’habituer." Laurent Schwartz

Introduced in 1945 by Eilenberg and Mac Lane in a paper entitled "General The-
ory of Natural Equivalences", category theory has grown over the past few decades
into a branch in mathematics, like algebra and analysis. Roughly speaking, it is a
general mathematical theory of structures, which provides numerous abstract con-
cepts of concrete ones in diverse domains in mathematics.
The objective of this paper is to provide the reader with the necessary knowledge
in category theory in order to understand the lemma. For this purpose, we are
going to introduce some definitions e.g. categories in chapter 2, where we provide a
generous amount of accessible examples such as the categories of groups or topolog-
ical spaces. Similarly, we will illustrate other important notions like functors and
natural transformations in the same section.
After setting up the right framework, the reader should be able to understand what
will follow.

In chapter 3, we are going to overcome the first milestone in category theory
by approaching the Yoneda Lemma. To give the reader an intuitive interpretation
of the lemma, Ravi Vakil, an algebraic geometry teacher at Stanford University
once explained the Yoneda Lemma as follows: "You work at a particle accelerator.
You want to understand some particle. All you can do is throw other particles at it
and see what happens. If you understand how your mystery particle responds to all
possible test particles at all possible test energies, then you know everything there is
to know about your mystery particle."
The proof is divided in two parts: in section 3.1 we show that we have in fact a
bijection and in the following one we analyze the "good behaviour" of this bijection
by changing one of the studied objects. In this process, we consider the Yoneda
embedding functor, and observe which information it holds for a given object.

2



The last chapter focuses on providing a concrete application of the Yoneda
Lemma. Furthermore, we want to emphasize how to use the categorical language
we previously intruduced, in algebraic topology. In particular, we first consider a
special kind of topological spaces, the simplicial complexes, made by attaching in
a nice way topological simplices. Then we generalize the simplicial complexes by
intruducing the simplicial sets, that will become useful after applying the Yoneda
Lemma. In order to return to some topological spaces we finish with the notion of
singular sets.

2 Category Theory

2.1 Axiomatic foundations

In this section, we will set some preliminary logic foundations, before we start our
discussion about categories. We assume the standard Zermelo-Fraenkel axioms for
the set theory and the existence of a set U which is the universe.
The Zermelo-Fraenkel axioms (on a membership relation ∈) are the following:

• Extensionality: sets with the same elements are equal;

• Null set: there exists a set with no elements;

• Existence of the sets {u, v}, 〈u, v〉, Pu and
⋃
x for all sets u, v, and x, where

we write { } as a set, 〈 , 〉 as an ordered pair, P as a power set of a set, and⋃
as a union;

• Infinity: the axiom of infinity holds;

• Choice: the axiom of choice holds;

• Regularity: every non-empty set A contains an element B which is disjoint
from A;

• Replacement: the image of a set under a function is a set. More precisely, let
a be a set and ϕ(x, y) a property which is functional for x in a, in the sense
that ϕ(x, y) and ϕ(x, y′) for x ∈ a imply y = y′, and that for each x ∈ a there
exists a y with ϕ(x, y); then there exists a set consisting of all those y such
that ϕ(x, y) holds for x ∈ a.

Moreover, the universe U is defined by the following axiom:

• [x ∈ y and y ∈ U ] ⇒ x ∈ U ;

• [I ∈ U and ∀i ∈ I xi ∈ U ] ⇒
⋃
i∈I xi ∈ U ;

• [x ∈ U ] ⇒ P(x) ∈ U ;

• [x ∈ U and f : x→ y surjective funtion ]⇒ y ∈ U .

• N ∈ U

We call small sets the elements of U .
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2.2 Definitions and basic notions

In this section, we will define the elementary notions in order to understand the
Yoneda Lemma.

2.2.1 Categories

Definition 1 (Category). A category C consists of the following:

1. a set |C|, whose elements will be called objects of the category;

2. for every pair A, B of objects, a set C(A,B) or HomC(A,B), whose elements
will be called morphisms or arrows from A to B;

3. for every triple A, B, C of objects, a composition law;

C(A,B)× C(B,C)→ C(A,C);

the composite of the pair (f, g) will be written g ◦ f or just gf ;

4. for every object A, a morphism 1A ∈ C(A,A), called the identity on A.

Such that the following axioms are satisfied:

1. Associativity axiom: given morphisms f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D)
the following equality holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

2. Identity axiom: given morphisms f ∈ C(A,B) the following equalities hold:

f = 1B ◦ f = f ◦ 1A.

Definition 2 (small category and locally small category). A category C is called
locally small if each HomC(A,B) is a small set for A,B ∈|C|. Furthermore, if the
collection of objects is a small set, then we say that C a small category.

Examples :
Let’s introduce some important examples of categories.

• Category of sets (Set):
The objects of this category are small sets and the arrows the functions be-
tween them. The composition law is the usual function composition ◦ and for
any set S, 1S is the usual identity function.
From set theory we know that the function composition is associative and the
identity functions are the neutral elements.

• Category of groups (Grp):
The objects of this category are all groups, the arrows are group homomor-
phisms. The composition law is the usual function composition ◦ and the
identity is the identity function. Since the axioms already hold at the level of
functions, we conclude that Grp is a category.
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We can similarly consider the category of vector spaces over a fixed field K,
denoted by VectK , the objects are all those vector spaces, and the arrows are
linear functions, with the usual identity and composition. In the same way,
we have the category of commutative rings Rng; the objects are commutative
rings, and the arrows are ring homomorphisms.

• Category of topological spaces (Top):
The objects of this category are all topological spaces and the arrows are
continuous mappings. Again, the composition law is the usual function com-
position ◦ and the neutral element is the identity function. The axioms are
also directly inherited from the mapping properties, because the identity is
always continuous in a topological space and the composition of continuous
function is continuous as well.

• Categories of small categories (Cat):
The objects of this category are all small categories and the morphisms are
functors (see next section) between small categories. The composition of
morphisms in Cat is the functor composition and the identity functor acts
as the identity morphism. The composition on functors is well defined and
works componentwise.

• Opposite category (Cop):
Given a category C we can define its opposite category Cop. The objects are
the same as for C i.e. |Cop| = |C| and for each A,B Cop(A,B) = C(B,A). If f
is an arrow of C, we write fop when we want to look at its equivalent in the
opposite category. Given fop ∈ Cop(A,B), gop ∈ Cop(B,C), (f, g are the
equivalent arrows in C) the composition law is given by gop◦opfop = (f ◦g)op

where ◦ is the composition law from C. The neutral element is the identity
function. The axioms hold because C is a category.

Remark 1. All of the categories of sets with structures are locally small.

2.2.2 Functors

Definition 3 (Functor). A functor F from a category A to a category B consists
of the following:

1. a mapping
|A| → |B|

between the sets of objects of A and B; the image of A ∈ A is written F (A)
or just FA;

2. for every pair of objects A, A′ of A, a mapping

A(A,A′)→ B(FA,FA′);

the image of f ∈ A(A,A′) is written F (f) or just Ff .

A functor must obey the following axioms:
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1. for every pair of morphism f ∈ A(A,A′), g ∈ A(A′, A′′)

F (g ◦ f) = F (g) ◦ F (f);

2. for every object A ∈ A
F (1A) = 1FA.

Examples :

• Maybe the most obvious functor to create is the identity functor. Given a
category C we define:

IdC : C → C

IdC(C) = C, IdC(f) = f.

We can quickly check the two axioms:

1. let f ∈ C(A,B), g ∈ C(B,C) IdC(g ◦ f) = g ◦ f = IdC(g) ◦ IdC(f);
2. let C ∈ |C|, IdC(1C) = 1C .

• If we consider a locally small category C and C ∈ |C|, we can define a functor
called a representable functor (which we will use quite often later):

C(C,−) : C → Set

C(C,−)(A) = C(C,A),

if f ∈ C(A,B),

C(C,−)(f) = C(C, f) : C(C,A)→ C(C,B)

C(C, f)(g) = f ◦ g.

Let’s check the two axioms:

1. let f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,A),
C(C,−)(g ◦ f)(h) = C(C, g ◦ f)(h) = g ◦ f ◦h = C(C, g)(f ◦h) = C(C, g) ◦
C(C, f)(h);

2. let f ∈ C(C,A), C(C, 1A)(f) = 1A ◦ f so C(C, 1A) = 1C(C,A).

• Given two categories C andD, andD ∈ |D|, we can define a constant functor
to D:

∆D : C → D

∆D(A) = B ∆D(f) = 1B.

The axioms are clearly satisfied here.

• We can define functors on all categories of structured sets (VectK , Grp, Rng,
Top, · · · ) such as the forgetful functors, that forgets the structure of these
objects. For example:

F : Grp→ Set, defined as follows;

6



for any group (G,+) and group homomorphism f : (A,+A)→ (B,+B)

F ((G,+)) = G

F (f) = f̄ ,

where f̄ : A → B is the same as f thought as a function, we just forget it is
a homomorphism. The axioms easily hold.
Similarly, we can also define a forgetful functor from Top to Set that forgets
the topology of spaces and forgets the continuity of functions.

• We can also add a structure to a set, for example we can define the functor:

Fdisc : Set→ Top, defined by

F (X) = (X, τdisc) F (f) = f

where τdisc is the discrete topology, i.e. τdisc = P(X).

• We define two functors from Rng to Grp.
The first one is GLn; to every commutative ring R of |Rng| it associates
the group GLn(R) of invertible n × n matrices with coefficients in R. To
each ring homomorphism f : R → R′ it associates the group homomorphism
GLn(f) : GLn(R)→ GLn(R′), such that (GLn(f)(M))i,j = f(Mi,j).
The second one is (−)∗, to each commutative ring (R,+, .) of |Rng| it as-
sociates (R∗, .) the group of invertible elements of R, and to each ring ho-
momorphism f : R → R′ the group morphism f∗ : R∗ → R′∗ such that
f∗(x) = f(x).
In both cases, the functorial properties easily hold.

Definition 4 (Contravariant functor). A contravariant functor from C to D is
a functor from Cop to D.
Functors that are not contravariant (the ones we previously introduced) are said to
be covariant.

Example :

• We can also define a contravariant representable functor, as follows. Let C be
a locally small category and C ∈ |C|. We define

C(−, C) : Cop → Set

C(−, C)(A) = C(A,C),

and if f ∈ C(A,B),

C(−, C)(f) = C(f, C) : C(B,C)→ C(A,C)

C(f, C)(g) = g ◦ f.
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2.2.3 Natural Transformations

Definition 5 (Natural Transformation). Consider two functors F, G: A⇒ B from
a category A to a category B. A natural transformation α : F ⇒ G from F to
G is a family of morphisms (αA : FA → GA)A∈A of B indexed by the objects of
A such that for every morphism f : A→ A′ in A, αA′ ◦F (f) = G(f) ◦αA, i.e. the
follwing diagram commutes.

A FA GA

A′ FA′ GA′

f

αA

Ff Gf

αA′

Let F , G and H be functors from A to B and α : F ⇒ G, β : G ⇒ H are
natural transformations, the composition law is as follows,

(β ◦ α)A = βA ◦ αA

One can see that this composition law is associative and for each functor F it
has a neutral element, which is simply the natural transformation IdF whose A-
component is IdFA.

Remark 2. Let A,B be categories. We writeFun(A,B) as the category of functors
from A to B, where the arrows are natural transformations between them. Equiva-
lently we write Fun∗(A,B) the category of covariant functors from A to B.

Examples :

• We use now the representable functor we previously defined (see section 2.2.2).
A natural transformation that we will use later is built by taking a category
A and a morphism f ∈ A(A,B). We can create a natural transformation
A(f,−) : A(B,−) ⇒ A(A,−). This transformation is defined, for C ∈ |A|
and g ∈ A(B,C) by

A(f,−)C(g) = A(f, C)(g) = g ◦ f.

We can check that it is a natural transformation, i.e. for each g ∈ A(C,D)
the following diagram commutes

C A(B,C) A(A,C)

D A(B,D) A(A,D)

g

A(f, C)

A(B, g) A(A, g)

A(f,D)
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In fact, we have for all h ∈ A(B,C) that

(A(f,−)D ◦ A(B,−)(g))(h) = (A(f,D) ◦ A(B, g))(h)
= A(f,D)(g ◦ h)
= (g ◦ h) ◦ f ∈ A(A,D)
= g ◦ (h ◦ f) by associativity of the arrows
= g ◦ A(f,A)(h)
= (A(A, g) ◦ A(f, C))(h)
= (A(A,−)(g) ◦ A(f,−)C)(h).

Hence, the transformation is natural.

• Let’s recall that we defined two functors GLn, (−)∗ : Rng→ Grp (see 2.2.2).
We will build a natural transfomation between them, called determinant de-
fined by

detR : (GLn(R))→ R∗ : M 7→ det(M)

It is well defined, because if M ∈ GLn(R) is an invertible matrix, its deter-
minant is invertible in R, so det(M) ∈ R∗.
Let’s prove that this transformation is natural, we need to show that for each
f : A→ B ∈ Rng the following diagram commutes.

A GLn(A) A∗

B GLn(B) B∗

f

detA

GLn(f) f∗

detB

In other words, detB ◦GLn(f) = (f)∗ ◦ detA.
Let M ∈ GLn(A). We have

detB ◦GLn(f)(M) = detB ◦ (GLn(f)(M))

=
∑
σ∈Sn

n∏
i=1

(GLn(f)(M))i,σ(i)

=
∑
σ∈Sn

n∏
i=1
f(Mi,σ(i))

=
∑
σ∈Sn

f

(
n∏
i=1
Mi,σ(i)

)
because f is a ring homomorphism

= f

∑
σ∈Sn

n∏
i=1
Mi,σ(i)

 for the same reason

9



f

∑
σ∈Sn

n∏
i=1
Mi,σ(i)

 = f∗

∑
σ∈Sn

n∏
i=1
Mi,σ(i)


= f∗ (det(M))
= f∗ ◦ detA(M).

Thus, det is a natural transformation.

• Canonical morphism σv : V → V ∗∗ : v 7→ v∗∗.
From an algebraic result, we know that each vector space V is isomorphic to its
bidual V ∗∗. We may show that this morphism defines a natural transformation
from the identity functor to the bidual functor, for every vector space V .
Consider the identity functor IdV ect : VectR → VectR and the bidual functor
()∗∗ : VectR → VectR. We have σv : V → V ∗∗ : v 7→ evv, where evv : V ∗ →
V ∗∗ : φ 7→ φ(v). We claim that setting σ := {σv}v∈V ect we get a natural
transformation from IdV ect to ( )∗∗.
In order to prove that σ is natural, we have to show that for each f : V →W
the following diagram commutes.

V IdV V ∗∗

W IdW W ∗∗

IdVectf

σv : v 7→ evv

IdVectf f∗∗

σw : w 7→ evw

Let v ∈ V , then:
(σw ◦ f)(v) = evfv.

Also, we have:

f∗∗ ◦ σv(v) = f∗∗ ◦ evv
= f∗∗(φ 7→ φ(v))
= φ 7→ (f ◦ φ)(v)
= φ 7→ φ(fv)
= evfv.

We have shown that the diagram commutes and thus σ is natural.

3 The Yoneda Lemma

3.1 The Yoneda Bijection

Theorem 1 (The Yoneda Lemma). Consider a functor F : A → Set from a locally
small category A to the category of sets, an object A ∈ A and the corresponding
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representable functor A(A,−) : A → Set. Then the follwing is a bijective corre-
spondence:

θF,A : Nat(A(A,−), F )
∼=−−−−−→ FA

θF,A(α) = αA(1A)
between the set of natural transformations from A(A,−) to F and the elements of
the set FA.

Proof. Consider a given element a ∈ FA. We define, for every object B ∈ A, a
mapping

τ(a)B : A(A,B) −→ FB,

given by τ(a)B(f) = F (f)(a). Hence, this class of mappings defines a natural
transformation

τ(a) : A(A,−)⇒ F.

Since, for every morphism g : B → C in A, the following relation holds.

Fg ◦ τ(a)B = τ(a)C ◦ A(A, g),

i.e. the diagram commutes.

A(A,B) FB

A(A,C) FC

τ(a)B

A(A, g) Fg

τ(a)C

In fact, ∀f ∈ A(A,B), by the functoriality of f we get:

Fg ◦ τ(a)B(f) = Fg(Ff(a))
= Fg ◦ Ff(a)
= F (g ◦ f)(a)
= τ(a)C(A(A, g)(f).

In order to finish the proof, we now have to show that θF,A and τ are the inverse
of each other.
Let a ∈ FA, we have

θF,A(τ(a)) = τ(a)A(1A) = (F1A)(a) = 1FA(a),

so θF,A ◦ τ = IdFA.
On the other hand, starting from α : A(A,−) ⇒ F and choosing a morphism
f : A→ B in A,

τ(θF,A(α))B(f) = τ(αA(1A))B(f)
= F (f)(αA(1A))
(∗)= αB(A(A, f)(1A))
= αB(f ◦ 1A)
= αB(f),
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where (∗) follows from the naturality of α. So τ(θFA(α)) and α coincide since they
have the same components.

There is a contravariant form of the Yoneda lemma for contravariant functors.

Theorem 2 (contravariant Yoneda Lemma). Consider a contravariant functor F :
A → Set from an locally small category A to the category of sets, an object A ∈ A
and the corresponding contravariant representable functor A(−, A) : Aop → Set.
Then the follwing is a bijective correspondence

θF,A : Nat(A(−, A), F )
∼=−−−−−→ FA

θF,A(α) = αA(1op
A )

between the natural transformations from A(−, A) to F and the elements of the
set FA.

Proof. The proof of the contravariant Yoneda Lemma is similar to the covariant
one.

3.1.1 Yoneda Embedding

Definition 6 (full and faithful). Consider a functor F : A → B. For every pair of
objects A, A′ ∈ A, we have a mapping

A(A,A′) −→ B(FA,FA′)

f 7→ Ff.

1. The functor F is said to be faithful when for all A, A′ the abovementioned
mapping is injective.

2. The functor F is said to be full when for all A, A′ the abovementioned
mappings is surjective.

3. The functor F is said to be fully faithful when it is both full and faithful.

The Yoneda lemma deals with the functors from a locally small category A to
Set. As in Remark 2, we can collect them in a category Fun(A,Set), where objects
are the functors from A to Set, and the arrows are natural transformations. Our
aim now is to show that this category in a certain sense contains A.
Let A be a locally small category, we define Yoneda embedding functors, as
follows:

Y ∗ : Aop −→ Fun(A,Set),
Y ∗(A) = A(A,−), Y ∗(f) = A(f,−)
Y∗ : A −→ Fun∗(A,Set),
Y∗(A) = A(−, A), Y∗(f) = A(−, f).
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We can check that Y ∗(1B) = 1Y ∗B and also, if f ∈ A(A,B), g ∈ A(B,C), Y ∗(g ◦
f) = Y ∗(f) ◦ Y ∗(g). So this is a contravariant functor. Similarly, Y∗ is a covariant
functor.

Now our motivation is equivalent to the following proposition:

Proposition 1 (Yoneda embedding). The Yoneda embedding functors are fully
faithful.

Proof. We prove the result for Y ∗. The second case is similar. What we want to
show is that for all A,B ∈ |A| the following mapping is bijective:

A(B,A) −→ Fun(A,Set)(Y ∗(A), Y ∗(B)), f 7→ Y ∗f.

Using the definition of Y ∗, we can replace Y ∗f with A(f,−) and since the arrows
of Fun(A,Set) are natural transformations we have that

Fun(A,Set)(Y ∗(A), Y ∗(B)) = Fun(A,Set)(A(A,−),A(B,−))
= Nat(A(A,−),A(B,−)).

So we can write the functor as

A(B,A) −→ Nat(A(A,−),A(B,−)), f 7→ A(f,−)

We prove that this is exactly the Yoneda bijection when F is the functor A(B,−).
Let’s compute τ in this case:

τ : A(B,A)→ Nat(A(A,−),A(B,−)), τ(f)A(B,−) : A(A,C)→ A(B,C)

τ(f)A(B,−)(g) = A(B,−)(g)(f) = A(B, g)(f) = g ◦ f = A(f,−)C(g).

Finally we found τ(f) = A(f,−) ∈ Nat(A(A,−),A(B,−)), which is exactly the
mapping we considered.

3.2 Naturality of the Yoneda Bijection

The Yoneda lemma describes a function between Nat(A(A,−), F ) and FA where
A is an object of a locally small category A and F is a functor from A to Set. Now
we want to prove that it is natural in both the variables, i.e. if we change either A
with a morphism, or F with a natural transformation, the bijection is consistent.
Basically, if F : A → Set is a fixed functor, we define the functor N : A → Set as
follows

N(A) = Nat(A(A,−), F )

N(f) :
∣∣∣∣∣ Nat(A(A,−), F )→ Nat(A(B,−), F )
α 7→ α ◦ A(f,−) where f ∈ A(A,B).

So N is the composition of two representable functors. We define a natural trans-
formation η : N ⇒ F by ηA = θF,A.
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Actually, it is natural, i.e (θF,B ◦N(f))(α) = (F (f) ◦ θF,A)(α).

In fact (θF,B ◦N(f))(α) = θF,B(α ◦ A(f,−))
= (α ◦ A(f,−))B(1B)
= αB(f)
= (αB ◦ A(A, f))(1A)
= F (f)(αA(1A))
= (F (f) ◦ θF,A)(α).

This means that the Yoneda bijection is natural in A.

Now let’s fix A ∈ |A| and consider the representable functorM : Fun(A,Set)→
Set with respect to A(A,−). More explicitly,

M(F ) = Nat(A(A,−), F ),

and given two functors F,G : A → Set and a natural transformation γ : F ⇒ G
we have
M(γ) :

∣∣∣∣∣ Nat(A(A,−), F ) −→ Nat(A(A,−), G)
α 7−→ γ ◦ α . We remark that this functor

actually takes values in Set thanks to the Yoneda bijection.
Moreover, consider the functor evaluation in A evA : Fun(A,Set)→ Set, given by

evA(F ) = FA

evA(γ) = γA, ∀F : A → Set, γ : F ⇒ G

It is well defined thanks to the definition of the composition of natural transforma-
tion and the identity of natural transformation.
Now we can define a natural transformation µ : M ⇒ evA, µF = θF,A. In order to
check thatM is natural, we need to show that (θG,A◦M(γ))(α) = (evA(γ)◦θF,A)(α).

But (θG,A ◦M(γ))(α) = θG,A(γ ◦ α)
= (γ ◦ α)A(1A)
= γA(αA(1A))
= (evA(γ) ◦ θF,A)(α).

So we have that the Yoneda bijection is natural in F as well.

Remark 3. The naturality holds in the contravariant form, too.

4 Simplicial sets: an important category of contravari-
ant functors

Simplicial sets have many applications in algebraic topology, where they give tools
to study a particular topology. We do not intend to discuss any important ap-
plications. Instead, we aim to provide an elementary introduction to simplicial

14



sets, understandable with the very basic knowledge of category theory given in the
previous chapter.

4.1 Simplicial complexes

Definition 7 (n-simplex). Let {u0, . . . , un} be points in RN . A point x =
N∑
i=0

λiui

is a linear combination of the ui if the sum of all λi is one. The linear combination
x =

∑N
i=0 λiui is a convex combination if all λi are non-negative. A convex hull

is the set of a convex combinations. We call a geometric n-simplex a convex hull
spanned by n+1 linear independent points denoted by [u0, · · · , un].
Definition 8 (Simplicial complex). A geometric simplicial complex X in RN
consists of a collection of simplices of various dimensions, in RN such that:

1. every face of a simplex of X is in X;

2. the intersection of any two simplices of X is a face of each of them.
Remark 4. To remove redundancy, we order the complexes taking the set of ver-
tices totally ordered such that [ui0 , · · · , iin ] is a simplex of X if and only if uij <
uil ∀j < l.

Figure 1: Example of 0-, 1-, 2-, and 3-simplices.

We want to define maps between such structures.
Definition 9 (Simplicial map). If K, L are two simplicial complexes, then a sim-
plicial map f : K → L is determined by taking the vertices vi of K to the vertices
f(vi) of L such that if [ui0 , · · · , uin ] is a simplex of K then f(ui0), · · · , f(uin) are
all vertices (not necessarily unique) of some simplex in L. The rest of the function
is determined by linear interpolation. If x =

∑n
j=1 λjuij in barycentric coordinates

of the simplex spanned by the vij , then f(x) =
∑n
j=1 λjf(uij ). Such a function is

continuous.
Definition 10 (Face of a simplex). Given a n-simplex [u0, · · · , ui, · · · , un], its ith
face is the (n-1)-simplex [u0, · · · , ui−1, ui+1, · · · , un].

We want to study particular maps, like the inclusion of a simplex in a complex
and the collapsing of a simplex in a simplex of lesser dimension. For example, there
is a simplicial map that assigns an edge to a triangle and another one that assigns
a triangle to one of its edges.
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Figure 2: Inclusion of a 2-simplex in a complex (left) and collapsing of a 2-simplex
in a 1-simplex (right).

4.2 Simplicial sets

Definition 11 (Category ∆). The category ∆ has as objects the finite ordered sets
[n] = {0, · · · , n}. The morphisms are order-preserving functions [m] → [n]. The
identity morphisms and the composition law are the usual functions on sets.

Remark 5. We can define coface and codegeneracy maps (respectively di and
si, n ∈ N) as follows:

di ∈ ∆([n], [n+ 1]) di(j) =
{

j if j < i
j + 1 if j ≥ i

i.e. di(0, · · · , n) = (di(0), · · · , di(n)) = (0, · · · , i− 1, i+ 1, · · · , n+ 1),

si ∈ ∆([n+ 1], [n]) si(j) =
{

j if j ≤ i
j − 1 if j > i

i.e. si(0, · · · , n+ 1) = (si(0), · · · , si(n+ 1)) = (0, · · · , i− 1, i, i, i+ 1, · · · , n).

Definition 12 (cosimplicial relations). The maps (di)i∈N and (si)i∈N follow the
cosimplicial relations defined by:

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = id = sjdj+1

sjdi = di−1sj if i > j + 1
sjsi = sisj+1 if i ≤ j.

Proposition 2. Every map f ∈ ∆op([n], [m]) has a unique factorization of the
form f = di1 · · · diksji · · · sjl satisfying n ≥ i1 > · · · > ik ≥ 0, 0 ≤ j1 < · · · < jl ≤
m and n+ l − k = m.
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Proof. The proof for the existence is a computation, and the uniqueness is due to
the cosimplicial relations.

Definition 13 (Simplicial set). A simplicial set is a functor X : ∆op → Set. We
write sSet = Fun(∆op,Set). Given a simplicial set X, we write Xn = X[n].

Remark 6. Thanks to the coface and codegeracy maps, when we have a simpli-
cial sets, we only need to know the images of the objects of |∆| and on the coface
and codegeneracy maps. With the factorization we can deduce how it works on
all the maps of ∆, i.e. if X is a singular set, and θ ∈ ∆op([n], [m]) such that
θ = di1 · · · diksji · · · sjl verifying the last remark, Xθ = X(di1 · · · diksji · · · sjl) =
X(sjl) · · ·X(sji)X(dik) · · ·X(di1). This leads us to a second definition of the sim-
plicial sets.

Definition 14 (Simplicial set). A simplicial set X is a collection of objects
(Xn)n∈N, and for each n ∈ N functions Di : Xn+1 → Xn and Si : Xn → Xn+1
for each 0 ≤ i ≤ n such that they follow the simplicial relations:

DiDj = Dj−1Di if i < j

DiSj = Sj−1Di if i < j

DjSj = id = Dj+1Sj

DiSj = SjDi−1 if i > j + 1
SiSj = Sj+1Si if i ≤ j.

Proposition 3. The two definitions of simplicial sets are equivalent.

Proof. This holds from the proposition 2.

Remark 7. Starting from a simplicial complex X, we can build a simplicial set.
We put in Xn not only all n-simplices of X, but also all the degenerated i-simplices
with i < n so X0 will be all the vertices, X1 the lines and degenerated vertices, X2
the triangles, and degenerated lines and vertices. (Di)i∈N correspond to face maps
that assigns a simplex to one of its faces, and (Si)i∈N are degeneracy maps that
transform a simplex in a degenerated simplex of higher dimension.

Definition 15 (Simplicial morphism). Morphisms in sSet are called simplicial
morphisms. They correspond to natural transformations between contravariant
functors from ∆ to Set.

Definition 16. We call ∆ : ∆ → sSet ∆[n] = ∆(−, [n]) the covariant Yoneda
embedding functor.

We can now proceed to an application of the Yoneda Lemma.

Proposition 4. Given a simplicial set X, we have

sSet(∆[n], X) ∼= Xn.
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Figure 3: A simplicial complex as the image of ordered simplices.

Proof. We have sSet(∆[n], X) = Nat(∆[n], X), thus the theorem is just the appli-
cation of the Yoneda Lemma.

Remark 8. This proposition allows us to think to the nth component of X as "the
set of n-simplexes".

4.3 Singular sets

Singular sets constitute an important example of how the singular sets are used in
topology.

Definition 17 (Standard n-simplex). We write |∆n| the standard n-simplex
defined by |∆n| = {(t0, · · · , tn) ∈ Rn+1|

∑n
i=0 ti = 1 and ti ≥ 0∀i} with the induced

standard topology.

Definition 18 (Singular set). Let Y be a topological space. The singular set
S(Y ) is a functor ∆op → Set (so a singular set) such that

S(Y )[n] = Top(|∆n|, Y )

i.e. S(Y )[n] is the set of all the continuous maps from |∆n| to Y .
Di and Si are defined by: if σ ∈ S(Y )[n], Diσ = σdi : |∆n−1| → Y, Siσ = σsi :
|∆n+1| → Y

[n] Top(|∆n|, Y ) [n] Top(|∆n|, Y )

[n-1 ] Top(|∆n−1|, Y ) [n-1 ] Top(|∆n−1|, Y )

⇒
S(Y )

⇒
S(Y )

di Di si Si

With that we can transpose our standard simplicial complexes in topological spaces,
we also want to create simplicial complexes from simplicial sets, so we introduce a
new functor.
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Figure 4: A singular simplex (left) and one of its faces (right).

Definition 19 (Realization functor). The realization functor |− | : sSet→ Top
is defined as follows:

|X| =
( ∞∐
n=0

Xn × |∆n|
)
/ ∼,

where ∼ is the equivalence relation generated by (x, di(p)) ∼ (Di(x), p) for x ∈
Xn+1, p ∈ |∆n| and (x, si(p)) ∼ (Si(x), p) for x ∈ Xn−1, p ∈ |∆n|.

This definition doesn’t look immediate. What it does is taking a simplicial set
X and build a simplicial complex, so particularly a topological space. The idea
is that for each element of Xn we associate an n-simplex, so we have a collection
of disjoints simplexes

∐
n∈NXn × |∆n|. The aim of the relation ∼ is to glue these

simplices according to the information given by X. For example, it takes (Di(x), p)
which is the ith face of x considered as a n-simplex, and identifies it with the ith face
of x represented by (x, di(p)), a (n+1)-simplex. It glues each face of x considered as
stand-alone simplices to the corresponding face of x. Since the identification is also
done for any other x, y such that Dj(y) = Di(x), if two simplices share the same
face, it will only be counted once. Similarly, we suppress the degenerate simplices,
since they already appear as nondegenerate simplices.

Remark 9. |∆[n]| is homeomorphic to |∆n|.

Theorem 3. Given a topological space Y and a simplicial set X, we have the
following bijection:

Top(|X|, Y ) ∼= sSet(X,S(Y )).

Proof. The proof builds explicitely the bijective functions (see [3] proposition 4.10).

This is very strong, each continuous function we have from the simplicial com-
plex to Y can be seen as a natural transformation between two simplicial sets, which
can be studied with the standard simplices thanks to the Yoneda Lemma. This con-
struction took some time and efforts but it provides a combinatorical model for the
homotopy theory of topological spaces.
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5 Conclusion
Since category theory is a very abstract field of mathematics, it takes time to get
used to the vocabulary and be able to "see" what is happening. Nevertheless, this
paper covers the key elements and basic examples towards a better understanding
and the intention behind the last part was to give a more visual way to represent
it. We hope we managed to spark interest in the reader to this very recent and still
expanding field of mathematics.
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